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On the basis of  the Dufor t -Franke l  method for the integration of differential equations of parabolic type, 
we develop a method for the numerical calculation of  nonstationary processes. 

It is known that analytic solutions describing nonstationary processes in cascades for the separation of isotope mix- 
tures have been constructed only for a limited number of  problems. In the first place, these deal essentially with cascades 
for the separation of  binary mixtures. In the second place, all known solutions relate either to cascade operation regimes 
without output or to a limited range of  variation of  the concentrations of  the isotope components, and they have been 
obtained only for cascades consisting of one section which has a continuous profile. 

The most promising method for the investigation of nonstationary processes appear to be methods for the numerical 
solution of  the equations describing these processes [1-6]. However, even in this case the most successful calculation methods 
from the standpoint of universality and efficiency of use on modern computers have been developed, in the main, solely for 
the case of separation of  binary isotope mixtures [4]. Attempts to carry these methods over to the calculation of non- 
stationary processes in cascades for the separation of multicomponent mixtures lead chiefly to results which are not universal 
and require large machine memories and long computation times. 

We describe below a method for the calculation of  nonstationary processes in cascade installations designed mainly 
for the separation of multicomponent isotope mixtures. 

The fundamental system of equations describing the space- t ime process of accumulating an m-component mixture 
of isotopes in a cascade with low enrichment per separating stage can be represented in the form 

2 r(s) ac,(s, O =  o_o.f~(s, t), i =  1 . . . . .  m - l ,  c~(s, t)]- 1. (1) 
Ot c~s 

1=I 

For most separation methods, it may be assumed with satisfactory accuracy that the residence time of  the mixture 
in stage F(s) is proportional to the interstage flow L(s) entering this stage, i.e., 

r (s) = hC (s), (2) 

where h is proportionality constant which has the dimensions of  time. 

For simplicity, we shall confine our attention to an ordinary rectangularly sectioned cascade, i.e., a cascade which 
has one input flow F and two output flows P1 and P2 ' which are removed at the ends of the cascade. The flow L(s) is 

regarded within the limits of  each section as a constant which is independent of the number of stages in that section. 

The transfer of  the i-th component in any section of  the cascade in the direction of the maximum enrichment in 
the lightest isotope can be written in the form 

\ 

Y~(s, t )= L Oci(s, t )  + L ci(s, t) 2eljcj(s,  t)+Tc~(s, t), (3) 
2 ds - 2 -  

]=1 

where eij = eo(M j - M i) is the relative enrichment factor for the isotope pair i - j  in the separation stage (the numbering of 

the isotopes is in increasing order of their mass numbers). 

The transferred amount T of  the mixture being separated is defined as P2 for the stages of the cascade which are 

situated in the enriching portion (with respect to the lightest isotopes), and P2 - F = -P1 for the stripping portion. 

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 43, No. 3, pp. 456-462, September, 1982. Original article 
submitted June 17, 1981. 
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Equation (1), with the new variables l=e0s, ~ = t ~ / 2 h ,  and taking account of (2) and (3), gives us 

t/~ r t t  

Oci 02ci Oc~ ~ (Mj - -  M~) ej - -  c i~_ (Mj  - -  M~) Oej 2T c?el. 
OT 0l 2 Ol i=i i=I Ol aoL O1 

(4) 

The condition for the joining of  two adjacent sections with numbers v and v + 1 can be obtained from the law of 
conservation of matter,  which in our case, taking account of the equality of the concentrations at the boundaries of  these 
sections, can be written as conservation of  the transferred mass of each component:  

L v Oct- L . . . .  T v L v+l Oct- L,~+I ,~ T,,+I 
2 Ol + --~- c~ "~" (Mj - -  Mi) cj + - -  c~ ~ c~ N" (Mj - -  Mi) cj + ci, 

i~1 /=1 

where L t' and L v+ ~ are values of the flow L in sections t, and t, + 1. Dividing this equation by c i and subtracting from it 

the analogous condition for the k-th component,  we find, after replacing the subscript k with the subscript j, that  

L '  In ci _LV+l 0 In c~ (5) cj Ol cj ,) = ( M j - - M ~ ) ( L " - - L V + I ) '  

where the + and - signs denote the right and left derivatives at the points under consideration. At  the input  point this 
condition has the form 

L' 0o? ,, 2 e  (of (6) 
8l Ol (LV - -  Lv+l) el ~ (Mi - -  Mi) c; = - -  c~). 

e 0 /=1 

At  the ends of  the cascade we have the equations 

Ji (0, ~) = - -  Plci (0, ~), (7) 

J~ (l~,, ~) = P2ci (Ip, ~), (8) 

where lp = eoSp; Sp is the total number of  stages in the cascade. 

Taking account of (3), after some transformations analogous to those used in deriving (5), we can represent these 
conditions in the form 

_ 0  
In (9) 

Ol z=0 

0 _  In cl = (Mj - -Mi ) .  
Ol cj l=1 v (10) 

In order to solve the resulting boundary-value problem, we must specify the initial distribution of the concentrations 
of all the components along the cascade; in the simplest case, where the cascade is initially filled with a homogeneous input 
mixture which has concentration ciF , this can be written as  

ci (/, 0) = el .  (11) 

Thus, the (m - 1) equations of the form (4), with the boundary conditions (5), (6), (9), and (10), the initial 

condition (11), and the identi ty ~ cj (l, -c) ~ 1, completely defines the system for finding any concentration of an m- 
1=1 

component  mixture at each point  of the cascade at any instant of  time. 

The expressions obtained here can easily be generalized to the cases of  cascades of any profile (with any type of 
distribution of  the flow L(s)) and cascades which have several input  flows and output  flows. In the case of the calculation 
of cascades whose operation is based on the use of invertible separation methods,  in the boundary conditions we must take 
account of the accumulation of isotopes in the phase-reversal vessels. 

To solve such problems, we can use various network-type finite-difference methods. However, all of these have been 
investigated fairly thoroughly only in the case of linear equations [7]. A t  the same time, the questions of the stability and 
convergence of these methods in the case of nonlinear boundary-value problems are, in practice, open problems. 

Among all the methods for the integration of these equations, explicit  numerical schemes are of the greatest interest, 
since they enable us to carry out the calculations efficiently with a computer which has a small operating memory.  The 
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transition to implicit schemes requires at each calculated time layer the solution of  large systems of nonlinear algebraic 
equations. I f  we wish to obtain sufficient accuracy in the results, this may require cumbersome computing procedures. At  
the same time, most of  the explicit schemes have the serious defect of becoming unstable outside of a limited range of 
variation of the spatial and time steps of the integration. 

However, as is known [8], for the solution of  linear boundary-value problems of parabolic type there exists an 
explicit method which is absolutely stable, i.e., is stable regardless of how the magnitude of the integration steps approaches 
zero. This method is known in the literature as the D u f o r t - F r a n k e l  method. 

The idea of  the method is that in symmetric finite-difference relations approximating a partial differential equation, 
the central term in the second space derivative is averaged over the two adjacent time layers. The only defect of this 

A-c2.. 
method is that its error of approximation ,Is with respect to the desired value of  x is of the order of  ~ F = - ~ 2 + O  �9 

A2 
(A~2+A -~) , where Ar  is the integration step with respect to time and A is step with respect to space, as a result of  which, 

when Ar  is large, there will be undesirable oscillations in the solution. 

In the present study we use a finite-difference network method constructed by analogy with the D u f o r t - F r a n k e l  

method. For  the transition to finite differences, we cover the entire region of integration with a uniform orthogonal net- 

work: l = kA (k = 0, 1 . . . . .  N), r = nAT (n = 1, 2 . . . .  ). The symmetric finite-difference relations approximating the deriva- 

fives at the nodes of  the network have the form [8]: 

O2c 
012 

OC C~& I - -  Cn h--I 

Ol 2A 

c~+~ - -  (c~+~ + c~-~) ,~ + c~,_ 1 

A= 

ac c'~ + I _ c ~ -  

a~ 2AT 

(12) 

(13) 

(14) 

where n is the number of  the time layer and k is the number of the space node in the calculation network. 

At  the junct ion points of  the sections and at the ends of  the cascade, we cannot use relations of the form (12). 
Here we must use one-sided expansions with a sufficiently high order of  accuracy. Practical calculations have shown that 
satisfactory results are obtained by using the following relations for one-sided derivatives: 

Oc- - -  2c~_ 3 + 9c~_ 2 - -  18c~_ 1 + 1 lc~ 

O[ 6A 

Oc + 2c~+ 3 - -  9c7~_z~@ 18c~+ 1 - -  1 lc~ 

Ol 6A 

(15) 

(16) 

which are obtained by superposition of  the expansions of the function c in Taylor 's  series at the points with subscripts 
k -  1, k -  2, k -  3 a n d k +  1, k + 2 ,  k + 3 ,  respectively. 

I t  follows from the expressions (13), (14) that  the difference scheme requires us to calculate, in addition, the values 
of the function at the second time layer. These calculations must be carried out with greater accuracy than is required for 
the solution in the remaining region. However, if  for our initial conditions we take conditions of the form (11), then the 
second time layer consists of initial data, except for the points of  introduction of the external flows, the points of  junction 
between the sections, and the ends of  the cascade, which are calculated by using the expansions (15) and (16). 

\ 
The above-described method was used for investigating transition processes in rectangularly sectioned cascades. The 

numerical investigations show that the process of  calculation remains stable over a fairly wide range of variation of the 
spatial and time steps of  the integration. We give below some results of the numerical investigation of  a cascade with a 
rectangular profile, using as an example the separation of a mixture of  tungsten isotopes with mass numbers M i = 180, 182, 
183, 184, and 186. The concentrations of  the components in the input flow were assumed to be equal to the concentrations 

in the natural mixture: ciF = 0.0014, 0.2646, 0.1440, 0.3060, and 0.2840. The parameters of  the cascade of the isotopes 

were taken to be the following: 2PffsoL= 1.538; 2P~/~oL= 1.004; lF= 7.5; l F = 8 , 4  The calculations were carried out with 

steps zX = 0.075 and Ar  = 0.0147. The stages were counted in the direction of enrichment of  the light end of  the isotope 
mass spectrum. The investigations were carried out for the following operating regimes: an open cascade, i.e., with the 
output  flows connected at all times; and a closed cascade, in which the output  flows were shut off (total recycle) at some 
nonzero instants of  time. 
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Fig. 1. Space- t ime distribution of  the concentrations of components 
with mass numbers 186 (a) and 184 (b): solid curves represent the 
ca~e of  an open cascade; dashed curves represent the case of a closed 
cascade; dimensionless time r : 1) 1; 2) 3; 3) ~ .  
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Fig. 2. Variation of  the concentrations of 
components with mass numbers 186 and 184 
(curves with primed numbers) as functions of  
dimensionless time r at the point where the 
output Pt is removed: 1, 1') open cascade; 
2, 2') closed cascade and cascade with 
permanently connected output P. ; 3, 3' and 
4, 4 ' )  output P1 connected at r ~ 0.5 and 
~- = 2.0, respectively. 

Figure 1 shows the space- t ime distributions of  the concentrations of isotopes with mass numbers 186 and 184 for 
an open cascade (solid curves) and a closed cascade (dashed curves). This gives a good illustration of the fact [91 that in 
the stationary state in total-recycle operation, the components with highest and lowest mass numbers attain maximum 
enrichment at the ends of the cascade, and those with intermediate mass numbers at intermediate points of the cascade. 

The numerical calculations show that during the initial period the cascade has a definite inertia to external perturba- 
tions. Thus, for example, the space- t ime  distribution of  the concentrations for open and closed cascades in the initial 
period are similar (curves 1 in Fig. 1), although in the stationary state the profiles of the concentrations for these two 
regimes are radically different. In Fig. 2, which shows how the concentrations of the isotopes with mass numbers 186 and 
184 (the curves with primednumbers)  at the point of the output P1 vary as functions of  time, curves 1, 2, and 1', 2' are 
practically identical up to r = 0.125, although they represent different regimes of cascade operation. 

It is also interesting to note that for the initial stage of  the transition period, at the ends of the cascade we observe 
maximum rates of  accumulation and maximum gradients of the concentrations of the components with highest and lowest 
mass numbers, whereas when the process is carried out with internal output, we find removal of a certain amount of isotopes. 
The result of  combining these two processes, taking account of  the competing influences of the other components of the 
mixture (the mixture is characterized by the fact that most of  the components in it are present in approximately the same 
quantities) is clearly illustrated in Fig. 2. Here we observe clearly expressed maxima and minima in the curves, and 
asymptotic behavior is observed only after some time has elapsed. 

We should also point out that the numerical calculations confirmed the natural fact that the stationary distribution 
of concentrations in cascades does not depend on their initial profile. The shape of this profile is essential only for deter- 
mining the duration of  the transition period. 

In the separation of  binary mixtures in cascades with a rectangular profile, it was noted [4] that for maximum 
reduction of  the transition period it is most advisable to use the method of  conducting the process with constantly connected 
waste and the product must be connected after the calculated value of the concentration is reached at the product point. 
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It is found that in the separation of multicomponent mixtures a conclusion analogous to this is not always valid. Calcula- 
tions show that when there is no output PI '  the variation of the concentrations at the point of application of P1 depends 
ov_ly slightly on whether or not there is an output P2" However, turning P on at different nonzero instants of time does 
not reduce the transition period and may even, on the contrary, increase it (see curves 4 and 4'  in Fig. 2). This may be 
explained by the fact that the distributions of the concentrations of the intermediate components along the cascade are of 
radically different form for the cases of closed and open cascades (see Fig. lb). 

The time required for calculating these examples by the above-described method on an ES-1033 computer is 10-15 
min. The error in the solutions in relation to the known stationary distributions was no more than 1.5%. 

All of the above-described results were obtained for a constant integration step with respect to time. However, 
here there is an additional possibility for reducing the amount of calculation work and the time needed for it by gradually 
increasing At,  which is permissible, since the solution is asymptotic. 

In conclusion, it should be noted that the method proposed in this study makes it possible to analyze fairly 
thoroughly the transition processes taking place in multisectional installations for the separation of multicomponent isotope 
mixtures and provides an opportunity for conducting investigations on the choice of the optimal strategy for carrying out 
the process in tile cascade. 

NOTATION 

ci(s , t), concentration of the i-th component at the s-th stage at time t; ciF , concentration of the i-th component in 

the input flow; Ji(s, t), amount of the i-th component transferred in the s-th stage at time t; T, amount of  mixture trans- 

ported in the cascade; F, input flow; P1, P2' output flows; e o, enrichment factor for components whose mass numbers differ 

by one; M i, mass number of the i-th component; l F, coordinate of the point of application of the input; lp, total length 

of the cascade. 
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